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The Extinction Probability in a 

Critical Branching Process 

by Howard J. Weiner* 

University of California at Davis 

and Stanford University 

I.   Introduction. 

Let Z(t) denote the number of cells alive at t in a critical age- 

dependent Bellman-Harris branching process with cell lifetime distribution 

G(t), G(0+) = 0, non-lattice and assume 

2 
(1.1) t (l-G(t)) -»0  as t -» °= . 

if0 

(1.2) 0 < [i  = tdG(t) < 
0 

Let the offspring generating function be denoted, for 0 < s < 1, 

CO 

(1.3) h(s)  =    2 p  s
k 

k=0 k 

and 

! 
(1.4) h   (1)   = 1 =    Skp (criticality) 

k=l 

and 

CO 

(1.5) 0 < a2   = h"(l)  =    S k(k-l)p,   < » . 
k=2 k 

See [1] Chapter 4 for details. 
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It is well-known that 

2u. 
(1.6) lim tP[Z(t) > 0] = -7 = b 

Various proofs of (1.6) and the corresponding result for a critical 

Galton-Watson or discrete time process have appeared.  See [1] Chapters 1, 4 

for comments and references.  For example, the proof of (1.6) in [2] uses the 

renewal theorem.  The proof in [1], Chapter 4, gives the asymptotic form for 

a critical generating function, from which (1.6) is a special case, and 

relates the generating function to that of a critical Galton-Watson process, 

for which results are obtained.  The proof given in this note is elementary 

and self-contained. 

II.  Comparisons and Iterations 

Definition.  For 0 < s < 1, t>0, 

CO 

(2.1) F(s,t) =    S p[Z(t)=k]sk. 
k=0 

It is well-known ([1], Chapter 4), and follows by the law of total 

probability that 

•t 
h(F(s,t-u))dG(u) . 

0 
(2.2) F(s,t)   =  s(l-G(t))   + 

Using  the   fact   that 

(2.3) P(t)   HP[Z(t)>0]   =  1-F(0,t), 

then from (2.2) it follows that, by a Taylor expansion on h(s) about s=l, 



(2.4) 
-/ 

l-P(t) = [ h(l-P(t-u))dG(u) 
" 0 

and' 

(2.5) 
pt 2 

l-P(t) =  [l-P(t-u) +-P (t-u) + o(P (t-u))}dG(u) 
0 2 

Rewriting (2.5), 

(2.6)     P(t) = l-G(t) + P(t-u)dG(u) -x- P (t-u)dG(u) + f (t) 
0 

where f(t) denotes the remainder. 

Lemma 1 ([1]) P(t)iO. 

Proof.  A simpler and elementary proof will be given here.  Clearly 

(2.7) P(t) i   C > 0. 

t/2 
Assume C>0.  Split the integral on the right side of (2.5) into r- 

+ 
0    t/2 

For large t, the integral 
t/2 

-2 0 
is  o(t     ).     Then it  is  clear  that 

(2.8) 
a 

1-C = l-C+2  C+o(l), 

which is a contradiction of C>0.  This proves the lemma. 

(2-9) Let G  (t) = n  iterate of G evaluated at t. 

Define the iterative sequences 

(2.10) Un+1(t) = J h(U (t-u)dG(u) 

U (t) = 1. 
o 



ft 

(2.11) 
n+1 

h(I (t-u))dG(u) 
0 

r. 
i (t) =. 
o 

1 , t < T 

1 - -, t > T 

for T > b. 

Lemma 2 Under assumptions (1.1) - (1.5), for n > 0,   and all t > T, 

(2.12) 

(2.13) 

0 < U (t) - F(0,t) < G(n)(t) 
~ n —• 

0 < U (t) - I (t) < G(n)(t) 
n      n 

(2.14) |l (t)-I (t)| < k(t), 
n    o 

where, for t -» °°, 

(2.15) tk(t) - 0. 

Proof.   Eq. (212) hoids for n = o 0 

Assume (2.12) for n.  Then, omitting arguments, 

(2.16) 0 < U .. -F — n+1 

„t 
h(U )-h(F)dG < 

^  n        — (U -F)dG 

pt 

< G(n)(t-u)dG=G(n+1)(t) 
0 

where the left inequality follows from the induction hypothesis and the 

monotonicity of h, and the right inequalities from the mean value theorem, the 

fact that h (1) = 1, and the induction hypothesis. 

To show (2.13), observe that for t >T 

(2.17) 0 < U -I  < - < 1 — o  o ~ t 
G(o)(t) 



Assume (2.13) for n by induction.  Then, arguing as in (2.16), 

(2.18) 
~ n+1 n+1 (h(U )-h(I ))dG < 

n    n    — 

^ ,(n) 

„t 
(U -I )dG 
0 n n 

< I G^(t-u)dG(u) = G(n+1)(t) 

To show (2.14) write I (t) as 

(2.19) Ix(t)   = 
•t/2 

0 

ft 
+ h(I   (t-u))dG(u) . 

t/2       ° 
pt 

Note   that   the  second  integral   ( 
„t/2 t/2 

) in (2.19) is o(t ) by (1.1). 

The first integral (   ) may be written by a Taylor expansion of h(s) about 

s = 1 as (t » T) 
0 

(2.20) I1(t) = o(t"
2) + 

•t/2 
h(l-^ )dG(u) 

rt/2 
= o(t Z) + J   (h(l) - C^)h'(l) + ^(-~)   h (1) 

+ o(t" )} dG(u) 

Using h(l) = h (1) = 1, and the expansion, 0 < u < t/2, 

(2.21) i = l(1+K)) 

in the right side of (2.20) yields 

(2.22)       I (t) = o(t"2) +G(t) -~  J   (l+;+o(J))dG(u) 
1 t    0     t 

•t/2 

+ 
,V •t/2 

2 - 
2t  0 

{l+o(p> I dG(u) 

as again by (1.1), an integration by parts yields 

CD 

(2.23) f   udG(u) = o(t
_1). 



It follows that 

(2.24) Ix(t) = I0(t) + f(t) 

where 

(2.25) 0 < [f(t)| < K < 

and as t -» °°, 

(2.26) t f(t) - 0. 

Then one may write 

(2.27)     I2(t) h(I0(t-u)+f(t-u))dG(u) 

> j {h(I0(t-u))+h«(I0(t-u))f(t-u)}dG(u) 

Note that for t » T. 

(2.28) 
T 

IX(T) = J h(I0(T-u))dG(u) 

and 

(2.29) h(l-e)G(T) < I1(T) < h(l - -)G(T), 

for some a > 0S e>0, 

(2.30)   I2(t) < J {h(I0(t-u) + h'(max{h(l - ~)G(T),1 - ^} )f(t-u)}dG(u) 

for some a > 0, y  > 0. 



For all t » T, (2.27) - (2.30) yield that 

»t 
(2.31) |l2(t)-I1(t)j < (1 - ~)J f(t-u)dG(u). 

Hence, repeating the argument of (2.27) - (2.31), 

a. 2 
(2.32) |l,(t)-I9(t)| < (1 - ~r      f(t-u)dGU;(u), 

0 

t 
.(2) 

where 

(2.33) 0 < a  is a constant. 

An induction yields that 

(2.34)      |l (t)-I (t)| < E (1 - f/f*GU)(t) = k(t), 
n   U     x=0    fc 

where  "*" denotes the usual convolution integral. 

The right side of (2.34) is now broken up into a number of parts, and 

upper bounds for each part is obtained. 

».2 

(2.35) k(t) = E + E  (1 - ^)£f*G(X)(t). 

*=°  .= t2 

Since 

(2.36) |f |*G^(t) < K 

the second term of (2.35) is dominated by 

co -fft 

(2.37) KE  (l-f)X<^|— 
X=t2 



The first term on the right of (2.35) is now written as 

(2.38)    E (1 - 7)2f*G(£}(t) 
i=0    Ü 

= Aci - ?>* [i 
t-t/in t   „t 

f       f(t-u)dGU)(u) j. 
Vt/in t J 

The  first   term on  the  right  side of   (2.38)   is bounded above by 

(2.39) t /X.fo t) 
a    \. 2 =  °(t     ), 

by the asymptotic behavior of  f  and summing the geometric series. 

The second term on the right side of (2.38) is split into the 

three terms, ignoring distinctions between [c] and  c, 

/t/in t   t in  t t „t 
(2.40)    E   +    E     +   E    J 

i=0    i=/t /in t  X=t in t t-t/in t 
f(t-u)dG(X)(u). 

Since Jf| < 1, Chebyshev's inequality yields 

.U> a£ (2.41)     J       jf(t-u)jdGW(u) < , 
t-t/in t (t-t/in t - ip,) 

where 

(2.42) 0 < a = (t-u,) dG(u). 
0 

An application of (2.41) to the first term of (2.40) yields 

(2.43) 
ft/Zn  t „t 

!    E    J 4=0   t-t/in t 
f(t-u)dG(£)(u)| <  &- 

t(in t)' 

for some ß > 0. 



The Central Limit theorem may be applied to the second and third terms 

of (2.40) since the summation index Z    is large. 

For Ü  > /t/4n t, 

(2.44)  GU)(t) - G(1)(t-t/ia t) ~ 4(|^) - H^=~ff  " % 

Applying   (2.44)   to  the  second  term of   (2.40)   and using the mean value 

theorem and 

(2.45) 9CO - -*= ^ '2 

V2TT 

yields 

(2.46) 
t  j&n  t        „t E J 

'ir/t/Xn t     t-t/Xn  t 
f(t-u)dG^£)(u) 

<    Z   cp(-L-4li) (-7——) 

<  -t/2 in t 2t
3/2 

— va in t/: 

where C  is a positive constant. • 

The Central Limit theorem is applied to the third term of (2.40), and 

since the arguments are large, use will be made of the standard approximation 

(2.47) 1 - ö(x) ~£ cp(X) 

for some ß > 0, as x 



10 

Applying (2.44) and (2.47) to the third term of (2.40) yields 

(2.48) 
t     „t 

i=t in t  t-t/in t 
f(t-u)dG(^(u) 

- o   v    ,t-luNr   a /i JA- 
i=t in t iu-  t-JL\i. 

n2   ,-uVTjn t 
ßt cp(-ti — )(at)(t/in t)   -6t in t 

< 
,-4 2 t u. 

< 
ye 

in t 

Now (2.37), (2.39), (2.43), (2.46), (2.48) applied to (2.34) yield 

that for all sufficiently large  t,  equation (2.14) holds. 

Theorem 1.  Under assumptions (1.1) _to (1.5) 

(1.6) lim tP[Z(t) > 0] = b. 
t —» CO 

Proof.  Combine (2.12) - (2.15) to yield 

(2.49) ^1 ^ o(n) jP[Z(t) > 0] - ^| < GW(t) + o(t  ) 

Let n -» <=°.  The weak law of large numbers yields the result. 

III.  Extension.  The result of Theorem 1 can be strengthened by the 

method. 

Theorem 2.  Under the assumptions (1.2) - (1.5) and in addition, for t -» °=, 

(3.1) t (l-G(t)) - 0 



11 

and 

(3.2) h(3)(l) < co, 

then for  t  large, 

(3.3) P[Z(t) > 0] ~- + ° X^ *• 
t 

for some unspecified constant c. 

Remark.  Conditions (3.1) and (3.2) are not as stringent as in [2], where 

more terms in the asymptotic expansion of P(t) are given. 

Outline of Proof. 

Define 

(3-4) Jn+l(t) = j MJn(t-u)dG(u) 

1,   t < T 
J«W   Ix.t.ljp,  t>T 

for T » b. 

As in the proof of (2.13) one. obtains 

(3.5) 0 < Un(t) - Jn(t) < G
(n)(t). 

An expansion of h  about  1 to four terms in the Taylor expansion 

yields that 

(3-6) JL(t) = J0(t) + o(t"
3) 



12 

From this and a similar tedious sequence of estimations as in Theorem 1, 

one obtains 

(3.7) |jn(t)-J0(t)| < G
(n)(t) + o(t"2) 

and again one lets n -> ra and applies the weak law of large numbers to complete 

the argument. 



13 
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